Giving Thanks for the Pioneering Advances in Machine Learning

As we gather around the table this Thanksgiving, it’s the perfect time to reflect on and express gratitude for the remarkable strides made in machine learning (ML) over recent years. These technical innovations have advanced the field and paved the way for countless applications that enhance our daily lives. Let’s check out some of the most influential ML architectures and algorithms for which we are thankful as a community.


1. The Transformer Architecture

Vaswani et al., 2017

We are grateful for the Transformer architecture, which revolutionized sequence modeling by introducing a novel attention mechanism, eliminating the reliance on recurrent neural networks (RNNs) for handling sequential data.

Key Components:

  • Self-Attention Mechanism: Computes representations of the input sequence by relating different positions via attention weights.
    \text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_k}} \right) V
  • Multi-Head Attention: Allows the model to focus on different positions by projecting queries, keys, and values multiple times with different linear projections. \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O where each head is computed as: \text{head}_i = \text{Attention}(Q W_i^Q, K W_i^K, V W_i^V)
  • Positional Encoding: Adds information about the position of tokens in the sequence since the model lacks recurrence. \text{PE}_{(pos, 2i)} = \sin\left( \frac{pos}{10000^{2i/d_{\text{model}}}} \right) \text{PE}_{(pos, 2i+1)} = \cos\left( \frac{pos}{10000^{2i/d_{\text{model}}}} \right)

Significance: Enabled parallelization in sequence processing, leading to significant speed-ups and improved performance in tasks like machine translation and language modeling.


2. Bidirectional Encoder Representations from Transformers (BERT)

Devlin et al., 2018

We are thankful for BERT, which introduced a method for pre-training deep bidirectional representations by jointly conditioning on both left and right contexts in all layers.

Key Concepts:

  • Masked Language Modeling (MLM): Randomly masks tokens in the input and predicts them using the surrounding context. Loss Function: \mathcal{L}_{\text{MLM}} = -\sum_{t \in \mathcal{M}} \log P_{\theta}(x_t | x_{\backslash \mathcal{M}}) where \mathcal{M} is the set of masked positions.
  • Next Sentence Prediction (NSP): Predicts whether a given pair of sentences follows sequentially in the original text.

Significance: Achieved state-of-the-art results on a wide range of NLP tasks via fine-tuning, demonstrating the power of large-scale pre-training.


3. Generative Pre-trained Transformers (GPT) Series

Radford et al., 2018-2020

We express gratitude for the GPT series, which leverages unsupervised pre-training on large corpora to generate human-like text.

Key Features:

  • Unidirectional Language Modeling: Predicts the next token x_t given previous tokens x_{<t}. Objective Function: \mathcal{L}_{\text{LM}} = -\sum_{t=1}^N \log P_{\theta}(x_t | x_{<t})
  • Decoder-Only Transformer Architecture: Utilizes masked self-attention to prevent the model from attending to future tokens.

Significance: Demonstrated the capability of large language models to perform few-shot learning, adapting to new tasks with minimal task-specific data.


4. Variational Autoencoders (VAEs)

Kingma and Welling, 2013

We appreciate VAEs for introducing a probabilistic approach to autoencoders, enabling generative modeling of complex data distributions.

Key Components:

  • Encoder Network: Learns an approximate posterior q_{\phi}(z|x).
  • Decoder Network: Reconstructs the input from latent variables z, modeling p_{\theta}(x|z).

Objective Function (Evidence Lower Bound – ELBO): \mathcal{L}(\theta, \phi; x) = -\text{KL}(q_{\phi}(z|x) \| p_{\theta}(z)) + \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] where p_{\theta}(z) is typically a standard normal prior \mathcal{N}(0, I).

Significance: Provided a framework for unsupervised learning of latent representations and generative modeling.


5. Generative Adversarial Networks (GANs)

Goodfellow et al., 2014

We are thankful for GANs, which consist of two neural networks—a generator G and a critic D—competing in a minimax game.

Objective Function: \min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D(G(z)))] where p_{\text{data}} is the data distribution and p_z is the prior over the latent space.

Significance: Enabled the generation of highly realistic synthetic data, impacting image synthesis, data augmentation, and more.


6. Deep Reinforcement Learning

Mnih et al., 2015; Silver et al., 2016

We give thanks for the combination of deep learning with reinforcement learning, leading to agents capable of performing complex tasks.

Key Algorithms:

  • Deep Q-Networks (DQN): Approximate the action-value function Q(s, a; \theta) using neural networks. Bellman Equation: Q(s, a) = r + \gamma \max_{a'} Q(s', a'; \theta^{-}) where \theta^{-} are the parameters of a target network.
  • Policy Gradient Methods: Optimize the policy \pi_{\theta}(a|s) directly. REINFORCE Algorithm Objective: \nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[ \nabla_{\theta} \log \pi_{\theta}(a|s) R \right] where R is the cumulative reward.

Significance: Achieved human-level performance in games like Atari and Go, advancing AI in decision-making tasks.


7. Normalization Techniques

We are grateful for normalization techniques that have improved training stability and performance of deep networks.

  • Batch Normalization (Ioffe and Szegedy, 2015) Formula: \hat{x}_i = \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} where \mu_{\mathcal{B}} and \sigma_{\mathcal{B}}^2 are the batch mean and variance.
  • Layer Normalization (Ba et al., 2016) Formula: \hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}} where \mu and \sigma^2 are computed over the features of a single sample.

Significance: Mitigated internal covariate shift, enabling faster and more reliable training.


8. Attention Mechanisms in Neural Networks

Bahdanau et al., 2014; Luong et al., 2015

We appreciate attention mechanisms for allowing models to focus on specific parts of the input when generating each output element.

Key Concepts:

  • Alignment Scores: Compute the relevance between encoder hidden states h_{\text{enc}} and decoder state s_{\text{dec}}. Common Score Functions:
    • Dot-product: \text{score}(h, s) = h^\top s
    • Additive (Bahdanau attention): \text{score}(h, s) = v_a^\top \tanh(W_a [h; s])
  • Context Vector: c_t = \sum_{i=1}^T \alpha_{t,i} h_i where the attention weights \alpha_{t,i} are computed as: \alpha_{t,i} = \frac{\exp(\text{score}(h_i, s_{t-1}))}{\sum_{k=1}^T \exp(\text{score}(h_k, s_{t-1}))}

Significance: Enhanced performance in sequence-to-sequence tasks by allowing models to utilize information from all input positions.


9. Graph Neural Networks (GNNs)

Scarselli et al., 2009; Kipf and Welling, 2016

We are thankful for GNNs, which extend neural networks to graph-structured data, enabling the modeling of relational information.

Message Passing Framework:

  • Node Representation Update: h_v^{(k)} = \sigma \left( \sum_{u \in \mathcal{N}(v)} W h_u^{(k-1)} + W_0 h_v^{(k-1)} \right) where:
    • h_v^{(k)} is the representation of node v at layer k.
    • \mathcal{N}(v) is the set of neighbors of node v.
    • W and W_0 are learnable weight matrices.
    • \sigma is a nonlinear activation function.
  • Graph Convolutional Networks (GCNs): H^{(k+1)} = \sigma \left( \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} H^{(k)} W^{(k)} \right) where:
    • \tilde{A} = A + I is the adjacency matrix with added self-loops.
    • \tilde{D} is the degree matrix of \tilde{A}.

Significance: Enabled advancements in social network analysis, molecular chemistry, and recommendation systems.


10. Self-Supervised Learning and Contrastive Learning

He et al., 2020; Chen et al., 2020

We are grateful for self-supervised learning techniques that leverage unlabeled data by creating surrogate tasks.

Contrastive Learning Objective:

  • InfoNCE Loss: \mathcal{L}_{i,j} = -\log \frac{\exp(\text{sim}(z_i, z_j)/\tau)}{\sum_{k=1}^{2N} \textbf{1}_{[k \neq i]} \exp(\text{sim}(z_i, z_k)/\tau)} where:
    • z_i and z_j are representations of two augmented views of the same sample.
    • \text{sim}(u, v) = \frac{u^\top v}{\|u\| \|v\|} is the cosine similarity.
    • \tau is a temperature parameter.
    • \textbf{1}_{[k \neq i]} is an indicator function equal to 1 when k \neq i.

Significance: Improved representation learning, leading to state-of-the-art results in computer vision tasks without requiring labeled data.


11. Differential Privacy in Machine Learning

Abadi et al., 2016

We give thanks for techniques that allow training models while preserving the privacy of individual data points.

Differential Privacy Guarantee:

  • Definition: A randomized algorithm \mathcal{A} provides (\epsilon, \delta)-differential privacy if for all datasets D and D' differing on one element, and all measurable subsets S: P[\mathcal{A}(D) \in S] \leq e^\epsilon P[\mathcal{A}(D') \in S] + \delta
  • Noise Addition: Applies calibrated noise to gradients during training to ensure privacy.

Significance: Enabled the deployment of machine learning models in privacy-sensitive applications.


12. Federated Learning

McMahan et al., 2017

We are thankful for federated learning, which allows training models across multiple decentralized devices while keeping data localized.

Federated Averaging Algorithm:

  1. Local Update: Each client k updates model parameters \theta using local data D_k: \theta_k^{t+1} = \theta^t - \eta \nabla_{\theta} \mathcal{L}(\theta^t; D_k)
  2. Global Aggregation: The server aggregates updates: \theta^{t+1} = \sum_{k=1}^K \frac{n_k}{n} \theta_k^{t+1} where:
    • n_k is the number of samples at client k.
    • n = \sum_{k=1}^K n_k is the total number of samples across all clients.

Significance: Addressed privacy concerns and bandwidth limitations in distributed systems.


13. Neural Architecture Search (NAS)

Zoph and Le, 2016

We appreciate NAS for automating the design of neural network architectures using optimization algorithms.

Approaches:

  • Reinforcement Learning-Based NAS: Uses an RNN controller to generate architectures, trained to maximize expected validation accuracy.
  • Differentiable NAS (DARTS): Models the architecture search space as continuous, enabling gradient-based optimization. Objective Function: \min_{\alpha} \mathcal{L}_{\text{val}}(w^*(\alpha), \alpha) where w^*(\alpha) is obtained by: w^*(\alpha) = \arg\min_w \mathcal{L}_{\text{train}}(w, \alpha)

Significance: Reduced human effort in designing architectures, leading to efficient and high-performing models.


14. Optimizer Advancements (Adam, AdaBound, RAdam)

We are thankful for advancements in optimization algorithms that improved training efficiency.

  • Adam Optimizer(Kingma and Ba, 2014)
    Update Rules: m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2, \hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \hat{v}_t = \frac{v_t}{1 - \beta_2^t}, \theta_{t+1} = \theta_t - \eta \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}
    where:
    • g_t is the gradient at time step t.
    • \beta_1 and \beta_2 are hyperparameters controlling the exponential decay rates.
    • \eta is the learning rate.
    • \epsilon is a small constant to prevent division by zero.

Significance: Improved optimization efficiency and convergence in training deep neural networks.


15. Diffusion Models for Generative Modeling

Ho et al., 2020; Song et al., 2020

We give thanks for diffusion models, which are generative models that learn data distributions by reversing a diffusion (noising) process.

Key Concepts:

  • Forward Diffusion Process: Gradually adds Gaussian noise to data over T timesteps.
    Noising Schedule: q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)
  • Reverse Process: Learns to denoise from x_T back to x_0.
    Objective Function: \mathcal{L}_{\text{simple}} = \mathbb{E}_{t, x_0, \epsilon} \left[ \| \epsilon - \epsilon_\theta(x_t, t) \|^2 \right] where:
    • \epsilon is the noise added to the data.
    • \epsilon_\theta(x_t, t) is the model’s prediction of the noise at timestep t.

Significance: Achieved state-of-the-art results in image generation, rivaling GANs without their training instability.


Give Thanks…

This Thanksgiving, let’s celebrate and express our gratitude for these groundbreaking contributions to machine learning. These technical advancements have not only pushed the boundaries of what’s possible but have also laid the foundation for future innovations that will continue to shape our world.

May we continue to build upon these foundations and contribute to the growing field of machine learning.

References

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information Processing Systems. arXiv:1706.03762
  • Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805
  • Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative Pre-training. OpenAI Blog.
  • Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv:1312.6114
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems.
  • Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level Control through Deep Reinforcement Learning. Nature.
  • Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. International Conference on Machine Learning (ICML).
  • Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer Normalization. arXiv:1607.06450
  • Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv:1409.0473
  • Kipf, T. N., & Welling, M. (2016). Semi-Supervised Classification with Graph Convolutional Networks. arXiv:1609.02907
  • He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum Contrast for Unsupervised Visual Representation Learning. arXiv:1911.05722
  • Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep Learning with Differential Privacy. ACM SIGSAC Conference on Computer and Communications Security.
  • McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv:1602.05629
  • Zoph, B., & Le, Q. V. (2016). Neural Architecture Search with Reinforcement Learning. arXiv:1611.01578
  • Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv:1412.6980
  • Ho, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models. arXiv:2006.11239

DiPol-GAN: A Trailblazer in Molecular Graph Generation

Five years ago, a groundbreaking paper introduced DiPol-GAN, a generative adversarial network (GAN) designed to create molecular graphs with specific chemical properties. Authored by Michael Guarino, et al. in 2019, this work remains a testament to the ingenuity at the intersection of machine learning and computational chemistry. Let’s dive into its contributions and why it continues to be influential.


From Molecules to Meaning: DiPol-GAN’s Key Innovations

DiPol-GAN broke new ground by addressing the complexities of molecular graph generation—a task requiring precision and adherence to chemical constraints. Here are the standout elements of this innovative approach:

  1. Direct Graph Representations
    While many models relied on SMILES strings to describe molecular structures, DiPol-GAN embraced the inherent richness of graph representations. Nodes represented atoms, edges captured bonds, and the graph structure preserved the relational nature of molecules—key for meaningful chemical property optimization.
  2. Hierarchical Reasoning with DIFFPOOL
    The paper introduced the use of Differentiable Pooling (DIFFPOOL) in the GAN discriminator. DIFFPOOL hierarchically aggregated graph nodes, allowing the model to extract high-level features and improve classification performance. Moreover, the authors adapted DIFFPOOL to handle multi-relational graphs, capturing the nuances of bond types—an essential feature for molecular modeling.
  3. Reinforcement Learning for Targeted Molecules
    DiPol-GAN incorporated a policy network to nudge the generative process toward molecules with desired properties, like solubility (logP) or drug-likeness. This clever integration of reinforcement learning allowed the model to focus on chemically relevant outcomes, setting a precedent for property-driven molecular design.

Five Years Later: Why DiPol-GAN Still Resonates

Even as research in graph neural networks and molecular AI progresses, DiPol-GAN’s contributions remain strikingly relevant:

  • Raising the Bar for Molecular GANs: By addressing the dual challenges of graph isomorphism and multi-relational edges, this model set a high standard for graph-based GANs.
  • Chemical Property Alignment: The integration of reinforcement learning into graph generation directly inspired modern approaches to property-targeted molecule design.
  • Benchmark Metrics: The study’s rigorous evaluation on validity, uniqueness, and novelty using the QM9 dataset provided benchmarks that still guide research today.

Continuing the Journey

DiPol-GAN’s legacy reminds us of the powerful synergy between machine learning and chemistry. Whether you’re exploring novel graph neural network architectures or advancing property-driven molecule generation, this paper offers invaluable insights.

For those working in related domains, revisiting this milestone study could spark new ideas and breakthroughs. Be sure to include it in your references to honor its influence and acknowledge the innovation it brought to the field:

Guarino, M., & Shah, A. Rivas, P., (2019). DiPol-GAN: Generating Molecular Graphs Adversarially with Relational Differentiable Pooling. Presented at the LXAI Workshop @ Neural Information Processing Society Conference (NeurIPS), pp. 9. [download]

Let’s keep building on this foundation, advancing science one molecule at a time.

Enhancing AI Safety: Improving Adversarial Robustness in Vision Language Models

The Research Question

How can we improve the adversarial robustness of Vision Language Models (VLMs) to ensure their safe deployment in critical applications? This question drives our exploration into focused adversarial training techniques that improve the security of these models without excessive computational costs.

Adversarial Robustness and AI Safety

Adversarial attacks involve subtle manipulations of input data designed to deceive machine learning models into making incorrect predictions. In the context of VLMs, these attacks can have severe implications, especially when these models are deployed in sensitive areas such as autonomous driving, healthcare, and content moderation.

Enhancing the adversarial robustness of VLMs is crucial for AI safety. Robust models can withstand adversarial inputs, ensuring reliable performance and preventing malicious exploitation. Our research focuses on a novel approach to achieve this robustness by selectively re-training components of the multimodal architecture.

Our Approach

Traditional methods to improve model robustness often involve adversarial training, which integrates adversarial examples into the training process. However, this can be computationally intensive, particularly for complex models like VLMs that process images and text.

Our study introduces a more efficient strategy: adversarially re-training only the language model component of the VLM. This targeted approach leverages the Fast Gradient Sign Method (FGSM) to generate adversarial examples and incorporates them into the training of the text decoder. We maintain computational efficiency by keeping the image encoder fixed while significantly enhancing the model’s overall robustness.

Key Findings

  1. Adversarial Training Efficiency: Adversarially re-training only the language model yields robustness comparable to full adversarial training, with reduced computational demands.
  2. Selective Training Impact: Freezing the image encoder and focusing on the text decoder maintains high performance and robustness. In contrast, training only the image encoder results in a significant performance drop.
  3. Benchmark Results: Experiments on the Flickr8k and COCO datasets demonstrate that our selective adversarial training approach effectively mitigates the impact of adversarial attacks, as evidenced by improved BLEU scores and model performance under adversarial conditions.

Implications for Ethical AI

Our findings support the development of more robust and secure AI systems, which is crucial for ethical AI deployment. By focusing on adversarial robustness, we contribute to the broader goal of AI safety, ensuring that multimodal models can be trusted in real-world applications.

For a detailed exploration of our methodology and findings, read the full paper pre-print: https://arxiv.org/abs/2407.21174

References

  • Rashid, M.B., & Rivas, P. (2024). AI Safety in Practice: Enhancing Adversarial Robustness in Multimodal Image Captioning. 3rd Workshop on Ethical Artificial Intelligence: Methods and Applications, ACM SIGKDD’24. https://arxiv.org/abs/2407.21174

About the Author

Maisha Binte Rashid is a Ph.D. student at Baylor University, specializing in AI safety and multimodal machine learning.

Celebrating Love and Innovation at The Lab: Welcome, PoderOso!

This Valentine’s Day at Baylor.AI, we’re not just celebrating love in the air but also the arrival of our latest powerhouse, affectionately named PoderOso. This state-of-the-art equipment is a testament to the unwavering support and vision of Dr. Greg Hamerly, the department chair of Computer Science at Baylor, and Dr. Daniel Pack, the dean of the School of Engineering and Computer Science. Their dedication to advancing research and innovation within our department has been instrumental in acquiring PoderOso, and for that, we are profoundly grateful.

The name ‘PoderOso’ is derived from Spanish, where ‘Poder’ means ‘Power’ and ‘Oso’ means ‘Bear’. Combined, ‘Poderoso’ translates to ‘Powerful’. Therefore, ‘PoderOso’ creatively merges these concepts to symbolize something that embodies both power and the strength of a bear, aptly reflecting the capabilities of machine.

PoderOso is a technological marvel boasting dual EPYC 7662 processors, a whopping 1024GB of DDR4-3200 ECC memory, cutting-edge storage solutions, and six NVIDIA L40S GPUs. It’s a beast designed for in-house AI research, setting a new benchmark for what we can achieve.

With PoderOso’s impressive specs, our team is poised to push the boundaries of deep learning faster than ever before. From advancing language models that can understand and generate human-like text to developing computer vision systems that can perceive the world as we do; from enhancing adversarial robustness to securing AI against malicious attacks to exploring the burgeoning field of quantum machine learning and driving forward multimodal AI research that integrates multiple types of data, PoderOso will be at the heart of our endeavors. Moreover, it will enable us to delve deeper into AI ethics, ensuring our advancements are aligned with our values and societal needs.

As we unbox PoderOso and get it up and running, we’re filled with anticipation for future breakthroughs. Below are photos of the unboxing and our dedicated IT team in front of the rack.

Our journey into the next frontier of AI research has just gotten a significant boost, thanks to PoderOso and the incredible support of our leaders. Here’s to a future where our research leads to technological advancements and fosters a more ethical, understanding, and inclusive world.

Happy Valentine’s Day to our Baylor.AI family and everyone supporting us on this exciting journey!

(Left to right) Brian Sitton, Mike Hutcheson, Pablo Rivas

Creation and Analysis of an NLU Dataset for DoD Cybersecurity Policies

Comprehending and implementing robust policies is crucial in cybersecurity. In our lab, Ernesto Quevedo et al. recently released a paper, Creation and Analysis of a Natural Language Understanding Dataset for DoD Cybersecurity Policies (CSIAC-DoDIN V1.0), which introduces a groundbreaking dataset to aid in this endeavor. This dataset bridges a significant gap in Legal Natural Language Processing (NLP) by providing structured data specifically focused on cybersecurity policies.

Dataset Overview

The CSIAC-DoDIN V1.0 dataset encompasses a wide array of cybersecurity-related policies, responsibilities, and procedures from the Department of Defense (DoD). Unlike existing datasets that focus primarily on privacy policies, this dataset includes detailed guidelines, strategies, and procedures essential for cybersecurity.

Key Contributions

  1. Novel Dataset: This dataset is the first to include comprehensive cybersecurity policies, guidelines, and procedures.
  2. Baseline Models: The paper provides baseline performance metrics using transformer-based models such as BERT, RoBERTa, Legal-BERT, and PrivBERT.
  3. Open Access: The dataset and code are publicly available, encouraging further research and collaboration.

Experiments and Results

Our team of researchers evaluated several transformer-based models on this dataset:

  • BERT: Demonstrated strong performance across various tasks.
  • RoBERTa: Showed competitive results, particularly in classification tasks.
  • Legal-BERT: Excelled in domain-specific tasks, benefiting from its legal data pre-training.
  • PrivBERT: Provided insights into the transferability of models across different policy subdomains.

Download

Access the CSIAC-DoDIN V1.0 dataset here to explore it and contribute to the advancement of Legal NLP. Join the effort to enhance cybersecurity policy understanding and implementation using cutting-edge NLP models. Download the paper here to learn more about the process.

Gabor Filters as Initializers for Convolutional Neural Networks: A Study on Inductive Bias and Performance on Image Classification

Rivas, Pablo, and Mehang Rai. 2023. “Enhancing CNNs Performance on Object Recognition Tasks with Gabor Initialization” Electronics 12, no. 19: 4072. https://doi.org/10.3390/electronics12194072

Our latest journal article, authored by Baylor graduate and former Baylor.AI lab member Mehang Rai, MS, marks an advancement in Convolutional Neural Networks (CNNs). The paper, titled “Enhancing CNNs Performance on Object Recognition Tasks with Gabor Initialization,” has not only garnered attention in academic circles but also achieved the prestigious Best Poster Award at the LXAI workshop at ICML 2023, a top-tier conference in the field.

Pablo Rivas and Mehang Rai, ” Gabor Filters as Initializers for Convolutional Neural Networks: A Study on Inductive Bias and Performance on Image Classification “, in The LXAI Workshop @ International Conference on Machine Learning (ICML 2023), 7/2023.

A Journey from Concept to Recognition Our journey with this research began with early discussions and progress shared here. The idea was simple yet profound: exploring the potential of Gabor filters, known for their exceptional feature extraction capabilities, in enhancing the performance of CNNs for object recognition tasks. This exploration led to a comprehensive study comparing the performance of Gabor-initialized CNNs against traditional CNNs with random initialization across six object recognition datasets.

Key Findings and Contributions The results were fascinating to us. The Gabor-initialized CNNs consistently outperformed traditional models in accuracy, area under the curve, minimum loss, and convergence speed. These findings provide robust evidence in favor of using Gabor-based methods for initializing the receptive fields of CNN architectures, a technique that was explored before with little success because researchers had been constraining Gabor filters during training, precluding gradient descent to optimize the filters as needed for general purpose object recognition, until now.

Our research contributes significantly to the field by demonstrating:

  1. Improved performance in object classification tasks with Gabor-initialized CNNs.
  2. Superior performance of random configurations of Gabor filters in the receptive layer, especially with complex datasets.
  3. Enhanced performance of CNNs in a shorter time frame when incorporating Gabor filters.

Implications and Future Directions This study reaffirms the historical success of Gabor filters in image processing and opens new avenues for their application in modern CNN architectures. The impact of this research is vast, suggesting potential enhancements in various applications of CNNs, from medical imaging to autonomous vehicles.

As we celebrate this achievement, we also look forward to further research. Future studies could explore initializing other vision architectures, such as Vision Transformers (ViTs), with Gabor filters.

It’s a proud moment for us at the lab to see our research recognized on a global platform like ICML 2023 and published in a journal. This accomplishment is a testament to our commitment to pushing the boundaries of AI and ML research. We congratulate Mehang Rai for this remarkable achievement and thank the AI community for their continued support and recognition.

Understanding the Executive Order on AI: Implications for the Industry and Academia

The White House recently released an executive order titled “Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence.” This directive aims to establish a framework for the responsible development and deployment of AI technologies in the United States. Here are a few key takeaways from this order and its implications for the AI industry and academic researchers.

1. What does this EO mean for the AI industry?

  • Regulatory Framework: The order emphasizes establishing a regulatory framework that ensures the safe and responsible development of AI. Companies must adhere to specific standards and best practices when developing and deploying AI technologies.
  • Transparency and Accountability: The industry is encouraged to adopt transparent methodologies and ensure that AI systems are explainable. This will likely lead to a surge in demand for tools and solutions that offer transparency in AI operations.
  • Collaboration with Federal Agencies: The order promotes cooperation between the private sector and federal agencies. This collaboration fosters innovation while ensuring AI technologies align with national interests and security.
  • Risk Management: Companies are urged to adopt risk management practices that identify and mitigate potential threats AI systems pose. This includes addressing biases, ensuring data privacy, and safeguarding against malicious uses of AI.

At the CRAIG/CSEAI, we’re committed to assisting industry and government partners in navigating this intricate AI regulatory terrain through our research, assessments, and training. Contact us to know more.

2. What does the EO mean for academics doing AI research?

  • Research Funding: The order highlights the importance of federal funding for AI research. Academics can expect increased support and resources for projects that align with the order’s objectives, especially those focusing on safety, security, and trustworthiness.
  • Ethical Considerations: Given the emphasis on trustworthy AI, researchers will be encouraged to incorporate ethical considerations into their work. This aligns with the growing movement towards AI ethics in the academic community.
  • Collaboration Opportunities: The directive promotes collaboration between academia and federal agencies. This could lead to new research opportunities, partnerships, and access to resources that were previously unavailable.
  • Publication and Transparency: The order underscores the importance of transparency in AI research. Academics will be encouraged to publish their findings, methodologies, and datasets to promote openness and reproducibility in the field.

The “Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence” is a significant step towards ensuring that AI technologies are developed and used responsibly. Both the AI industry and academic researchers have a pivotal role to play in realizing the order’s objectives. This order is, in part, a follow-up on prior white house’s effort to promote responsible AI.

Evaluating Robustness of Reconstruction Models with Adversarial Networks

K. Sooksatra, G. Bejarano, and P. Rivas, “Evaluating Robustness of Reconstruction Models with Adversarial Networks,” Procedia Computer Science, vol. 222, pp. 353-366, 2023. https://doi.org/10.1016/j.procs.2023.08.174.

In the ever-evolving landscape of artificial intelligence, our lab has made a significant breakthrough with our latest publication featured in Procedia Computer Science. This research, spearheaded by Korn Sooksatra, delves into the critical domain of adversarial robustness, mainly focusing on reconstruction models, which, until now, have been a less explored facet of adversarial research. This paper was accepted initially into IJCNN and chosen to be added to the INNS workshop and published as a journal article.

Key Takeaways:

  1. Innovative Frameworks: The team introduced two novel frameworks for assessing adversarial robustness: the standard framework, which perturbs input images to deceive reconstruction models, and the universal-attack framework, which generates adversarial perturbations from a dataset’s distribution.
  2. Outperforming Benchmarks: Through rigorous testing on MNIST and Cropped Yale Face datasets, these frameworks demonstrated superior performance in altering image reconstruction and classification, surpassing existing state-of-the-art adversarial attacks.
  3. Enhancing Model Resilience: A pivotal aspect of the study was using these frameworks to retrain reconstruction models, significantly improving their defense against adversarial perturbations and showcasing an ethical application of adversarial networks.
  4. Latent Space Analysis: The research also included a thorough examination of the latent space, ensuring that adversarial attacks do not compromise the underlying features that are crucial for reconstruction integrity.

Broader Impact:

The implications of this research are profound for the AI community. It not only presents a method to evaluate and enhance the robustness of reconstruction models but also opens avenues for applying these frameworks to other image-to-image applications. The lab’s work is a call to the AI research community to prioritize the development of robust AI systems that can withstand adversarial threats, ensuring the security and reliability of AI applications across various domains.

Future Directions:

While the frameworks developed are groundbreaking, the team acknowledges the need for reduced preprocessing time to enhance practicality. Future work aims to refine these frameworks and extend their application to other domains, such as video keypoint interpretation, anomaly detection, and graph prediction.

The result of our standard framework without the discriminator on the left is from the VAE, and on the right is from the VAEGAN. The images 1) in the first column are clean; 2) in the second column are the reconstructed images for the images in the first column; 3) in the third column are adversarial examples concerning the images in the first column; 4) in the last column are the reconstructed images for the adversarial examples.

AI Orthopraxy: Walking the Talk of Trustworthy AI

In today’s digital age, trust has become a precious commodity. It’s the invisible currency that fuels our interactions with technology and brands. Building trust, especially in technology, is a costly and time-consuming process. However, the payoff is immense. When users trust a system or a brand, they are more likely to engage with it, advocate for it, and remain loyal even when faced with alternatives.

One of the most effective ways to build trust in technology is to ensure it aligns with societal goals and values. When a system or technology operates in a way that benefits society and adheres to its values, it is more likely to be trusted and accepted.

However, artificial intelligence (AI) has faced significant challenges. Despite its immense potential and numerous benefits, trust in AI has suffered. This is due to various factors, including concerns about privacy, transparency, potential biases, and the lack of a clear ethical framework guiding its use.

This is where the concept of AI Orthopraxy comes in. AI Orthopraxy is all about the correct practice of AI. It’s about ensuring that AI is developed and used in a way that is ethical, responsible, and aligned with societal values. It’s about walking the talk of trustworthy AI.

In this talk, I will discuss the concept of AI Orthopraxy, the recent developments in AI, the associated risks, and the tools and strategies we can use to ensure the responsible use of AI. The goal is not just to highlight the challenges but also to provide a roadmap for moving forward in a way that is beneficial for all stakeholders.

Large Language Models (LLMs) and Large Multimodal Models: The Ethical Implications

The journey of Large Language Models (LLMs) has been remarkable. From the early successes of models like GPT and BERT, we have seen a rapid evolution in the capabilities of these models. The most recent iterations, such as ChatGPT, have demonstrated an impressive ability to generate human-like text, opening up many applications in areas like customer service, content creation, and more.

Parallel to this, the field of vision models has also seen significant advancements. Introducing models like Vision Transformer (ViT) has revolutionized how we process and understand visual data, leading to breakthroughs in medical imaging, autonomous driving, and more.

However, as with any powerful technology, these models come with their own challenges. One of the most concerning is their fragility, especially when faced with adversarial attacks. These attacks, which involve subtly modifying input data to mislead the model, have exposed the vulnerabilities of these models and raised questions about their reliability.

As someone deeply involved in this space, I see both the immense potential of these models and the serious risks they pose. But I firmly believe these risks can be mitigated with careful engineering and regulation.

Careful engineering involves developing robust models resistant to adversarial attacks and biases. It involves ensuring transparency in how these models work and making them interpretable so that their decisions can be understood and scrutinized.

On the other hand, regulation involves setting up rules and standards that guide the development and use of these models. It involves ensuring that these models are used responsibly and ethically and that there are mechanisms in place to hold those who misuse them accountable.

AI Ethics Standards: The Need for a Common Framework

Standards play a crucial role in ensuring technology’s responsible and ethical use. In the context of AI, they can help make systems fair, accountable, and transparent. They provide a common framework that guides the development and use of AI, ensuring that it aligns with societal values and goals.

One of the key initiatives in this space is the P70XX series of standards developed by the IEEE. These standards address various ethical considerations in system and software engineering and provide guidelines for embedding ethics into the design process.

Similarly, the International Organization for Standardization (ISO) has been working on standards related to AI. These standards cover various aspects of AI, including its terminology, trustworthiness, and use in specific sectors like healthcare and transportation.

The National Institute of Standards and Technology (NIST) has led efforts to develop a framework for AI standards in the United States. This framework aims to support the development and use of trustworthy AI systems and to promote innovation and public confidence in these systems.

The potential of these standards goes beyond just guiding the development and use of AI. There is a growing discussion about the possibility of these standards becoming recommended legal practice. This would mean that adherence to these standards would not just be a matter of ethical responsibility but also a legal requirement.

This possibility underscores the importance of these standards and their role in ensuring the responsible and ethical use of AI. However, standards alone are not enough. They need to be complemented by best practices in AI.

AI Best Practices: From Theory to Practice

As we navigate the complex landscape of AI ethics, best practices serve as our compass. They provide practical guidance on how to implement the principles of ethical AI in real-world systems.

One such best practice is the use of model cards for AI models. Model cards are like nutrition labels for AI models. They provide essential information about a model, including its purpose, performance, and potential biases. By providing this information, model cards help users understand what a model does, how well it does, and any limitations it might have.

Similarly, data sheets for datasets provide essential information about the datasets used to train AI models. They include details about the data collection process, the characteristics of the data, and any potential biases in the data. This helps users understand the strengths and weaknesses of the dataset and the models trained on it.

A newer practice is the use of Data Statements for Natural Language Processing, proposed to mitigate system bias and enable better science in NLP technologies. Data Statements are intended to address scientific and ethical issues arising from using data from specific populations in developing technology for other populations. They are designed to help alleviate exclusion and bias in language technology, lead to better precision in claims about how NLP research can generalize, and ultimately lead to language technology that respects its users’ preferred linguistic style and does not misrepresent them to others.

However, these best practices are only effective if a trained workforce understands them and can implement them in their work. This underscores the importance of education and training in AI ethics. It’s not enough to develop ethical AI systems; we must cultivate a workforce that can uphold these ethical standards in their work. Initiatives like the CSEAI promote responsible AI and develop a workforce equipped to navigate AI’s ethical challenges.

The Role of the CSEAI in Promoting Responsible AI

The Center for Standards and Ethics in AI (CSEAI) is pivotal in promoting responsible AI. Our mission at CSEAI is to provide applicable, actionable standard practices in trustworthy AI. We believe the path to responsible AI lies in the intersection of robust technical standards and ethical solid guidelines.

One of the critical areas of our work is developing these standards. We work closely with researchers, practitioners, and policymakers to develop standards that are technically sound and ethically grounded. These standards provide a common framework that guides the development and use of AI, ensuring that it aligns with societal values and goals.

In addition to developing standards, we also focus on state-of-the-art collaborative AI research and workforce development. We believe that responsible AI requires a workforce that is not just technically competent but also ethically aware. To this end, we offer training programs and resources that help individuals understand the ethical implications of AI, upcoming regulations, and the importance of bare minimum practices like Model Cards, Datasheets for Datasets, and Data Statements.

As the field of AI continues to evolve, so does the landscape of regulation, standardization, and best practices. At CSEAI, we are committed to staying ahead of these changes. We continuously update our value propositions and training programs to reflect the latest developments in the field and to ensure our standards and practices align with emerging regulations.

As the CSEAI initiative moves forward, we aim to ensure that AI is developed and used in a way that is beneficial for all stakeholders. We believe that with the right standards and practices, we can harness the power of AI in a way that is responsible, ethical, and aligned with societal values in a manner that is profitable for our industry partners and safe, robust, and trustworthy for all users.

Conclusion: The Future of Trustworthy AI

As we look toward the future of AI, we find ourselves amidst a cacophony of voices. As my colleagues put it, on one hand, we have the “AI Safety” group, which often stokes fear by highlighting existential risks from AI, potentially distracting from immediate concerns while simultaneously pushing for rapid AI development. On the other hand, we have the “AI Ethics” group, which tends to focus on the faults and dangers of AI at every turn, creating a brand of criticism hype and advocating for extreme caution in AI use.

However, most of us in the AI community operate in the quiet middle ground. We recognize the immense benefits that AI can bring to sectors like healthcare, education, and vision, among others. At the same time, we are acutely aware of the severe risks and harms that AI can pose. But we firmly believe that, like with electricity, cars, planes, and other transformative technologies, these risks can be minimized with careful engineering and regulation.

Consider the analogy of seatbelts in cars. Initially, many people resisted their use. We felt safe enough, with our mothers instinctively extending an arm in front of us during sudden stops. But when a serious accident occurred, the importance of seatbelts became painfully clear. AI regulation can be seen in a similar light. There may be resistance initially, but with proper safeguards in place, we can ensure that when something goes wrong—and it inevitably will—we will all be better prepared to handle it. More importantly, these safeguards will be able to protect those who are most vulnerable and unable to protect themselves.

As we continue to navigate the complex landscape of AI, let’s remember to stay grounded, to focus on the tangible and immediate impacts of our work, and to always strive for the responsible and ethical use of AI. Thank you.

This is a ChatGPT-generated summary of a noisy transcript of a keynote presented at Marist College on Tuesday, June 13, 2023, at 9 am as part of the Enterprise Computing Conference in Poughkeepsie, New York.

The White House Promotes Responsible AI: Here’s What It Means for the Industry

Today, we are on the brink of a new era where Artificial Intelligence (AI) promises to transform every aspect of our lives. However, with great power comes great responsibility. As AI permeates our societies and economies, ensuring its responsible use becomes more critical.

The Biden-Harris Administration has recently taken considerable steps to foster responsible AI innovation, protect citizens’ rights, and ensure safety. But what does this mean for industry players, particularly those who integrate AI into their products?

A Call for Responsibility

At the heart of the White House’s strategy is the principle that companies have a fundamental responsibility to ensure their products are safe before deployment. This safety-first approach means preventing harm and actively promoting the public good.

Meeting with CEOs of leading AI innovators, the Administration has underscored the importance of ethical and trustworthy AI systems, emphasizing safeguards to mitigate risks and potential harms.

Investing in Responsible AI

The Biden-Harris Administration is backing up its words with actions, committing $140 million to launch seven new National AI Research Institutes. These will bring the total number of institutes to 25 nationwide, and each is committed to ethical, responsible AI that serves the public good.

The Role of the NSF IUCRC, Center for Standards and Ethics in AI (CSEAI)

This is where our initiative, the NSF IUCRC, Center for Standards and Ethics in AI (CSEAI), comes into play. We align perfectly with the Administration’s vision for responsible AI, focusing on establishing standards and ethics that serve as the bedrock for AI development and application.

By joining and funding the CSEAI, industry members will directly collaborate with other industry members and with academia, contributing to responsible AI research and advancement. This aligns with the White House’s call for ethical and safe AI and benefits companies in the long run, ensuring their products meet the highest ethical and safety standards.

What this Means for AI Developers and Users

The White House’s recent announcements signal a shift towards more stringent AI development and use standards. This means industries must prioritize building and deploying AI systems that are ethical, trustworthy, and serve the public good.

In a world where AI is becoming ubiquitous, failing to meet these standards can lead to reputational damage, regulatory penalties, and even legal liability. Conversely, those who embrace these principles stand to gain significant competitive advantage, building trust with users and staying ahead of the regulatory curve.

Conclusion

The White House’s commitment to responsible AI is not just good news for Americans—it’s a call to action for industry members who develop or use AI. By aligning with the principles of responsible AI and supporting initiatives like the NSF IUCRC, Center for Standards and Ethics in AI (CSEAI), industry players can meet their ethical obligations and secure their future place in AI.

Join us in making AI safe, ethical, and beneficial for all.