Deep Learning Models: Identifying Patterns in Stolen Car Parts

Deep learning models are utilized for various research tasks, one of which is image classification. Our research in AI-Assisted Pattern Discovery in Car Parts Data has leveraged this technology for recognizing patterns. Given the sales of stolen car parts on online marketplaces is a significant issue in today’s society, we wished to investigate deeper and identify any patterns of interest.


The dataset used comprised of several TAR (Tape Archive) files, each consisting of thousands of images from various online Craigslist posts advertising car parts for sale. Utilizing various Python scripts, each image was parsed with significant features being noted for use in classification with the deep learning model.


ViT Base, the pre-trained model that was used, proved useful for this classification task. Employing a vision transformer architecture, this model was designed specifically for processing image data. Each image is handed in by patches of 16×16 pixels, and then subsequently processed by the model. This model was pre-trained on a vast dataset, ImageNet-21k, which contains over 14 million images.


Utilizing the dataset and deep learning model, this facilitated the requirement for embeddings. Embeddings are distinct features of image data that are converted into a vector, allowing the model to process information. Each image had embeddings extracted and were subsequently compiled in a CSV (Comma-Separated Values) file to be passed in for UMAP (Uniform Manifold Approximation and Projection) visualization. By the end, nearly 85,000 images/embeddings were obtained.

Upon extraction of these embeddings, the K Means Algorithm was utilized in order to generate 20 clusters for the given dataset. Through this, the script produced 3 different scores: Silhouette, Calinski-Harabasz Index, and Davies-Bouldin Index. Silhouette measures how similar an object is to its own cluster compared to all other clusters, Calinski-Harabasz Index measures the variance within clusters compared to the variance between clusters, and Davies-Bouldin Index measures the average similarity ratio of each cluster with the cluster that is most similar to it. Using these scores, it was now possible to interpret an optimal low dimensional space for the clustering.

Among the dimensions that were tested—16, 32, 64, and 128—64 dimensions were the best suited. Furthermore, 128 dimensions proved to be optimal while 16 dimensions and 32 dimensions fell short of expectations. However, it was through these tests that the silhouette score revealed itself to be quite small, sitting at a value of 0.015150264836847782. UMAP visualization for 64 dimensions also revealed several outliers to corroborate this fact. With 64 dimensions, K Nearest Neighbors was run to obtain all the cluster centroids and cluster assignments for all points in the dataset. The top 10 closest posts to each cluster centroid were compiled into a document that displayed all the images along with their corresponding post ID.


Upon completion, 20 different clusters were evaluated each representing a different set of features in the images. As a result, we had acquired sets of posts that have commonalities, allowing for interpretation of the dataset. For reference, Cluster 0 displayed images that were primarily of exteriors of various vehicles, Cluster 1 displayed images of parts that attach to the exterior, Cluster 2 displayed images of powertrains (engines, transmissions, differentials), Cluster 3 displayed individual body panels (doors, trunks, hoods), and Cluster 4 displayed images of accessories that are used to pull trailers and carry bikes.

UMAP Visualization for 64 dimensions

As stated previously, the silhouette score for the dataset proved to be notably small, which was supported by the fact that the visualization contained numerous outliers in the data. This might have been attributed to the fact that the clusters lacked clear definition. Essentially, this means that several of these posts contained images that did not display many distinguishable features. This makes sense considering that although the clusters emphasized focus on a specific set of car parts, several still displayed various other vehicle components. For instance, although Cluster 2 primarily featured images of powertrains, the posts in this cluster also exhibited efforts to showcase the exterior and body panels of the vehicle. This is logical as posters would likely aim to showcase multiple facets of the vehicle when selling it, explaining the lack of focus on specific car parts.

International Conference on Emergent and Quantum Technologies (ICEQT’24)

July 22-25, 2024 — Las Vegas, NV

Dear Esteemed Colleagues,

Quantum computing is an expeditiously evolving field of interdisciplinary research, drawing upon fundamental principles from mathematics, physics, and engineering. To maintain scientific rigor and foster advancement, this domain necessitates a collaborative effort across various STEM disciplines.

We are delighted to announce the International Conference on Emergent and Quantum Technologies (ICEQT’24), scheduled for July 22-25, 2024, in Las Vegas, NV. The conference is designed to serve as a platform for researchers specializing in quantum machine learning and machine learning professionals exploring the application of AI in enhancing quantum computing algorithms. It aims to facilitate the exchange of insights and developments within these dynamic areas of study.

The burgeoning interest among machine learning practitioners in leveraging AI for quantum computing endeavors, and vice versa, underscores the relevance of this conference. Thus, we warmly welcome the submission of original research papers that contribute novel insights and state-of-the-art developments in the following areas of interest:

Foundations of Quantum Computing and Quantum Machine Learning

  • Quantum computing models and paradigms, e.g., Grover, Shor, and others
  • Quantum algorithms for Linear Systems of Equations
  • Quantum Tensor Networks and their Applications in QML

Quantum Machine Learning Algorithms

  • Quantum Neural Networks
  • Quantum Hidden Markov Models
  • Quantum PCA
  • Quantum SVM
  • Quantum Autoencoders
  • Quantum Transfer Learning
  • Quantum Boltzmann machines
  • Theory of Quantum-enhanced Machine Learning

AI for Quantum Computing

  • Machine learning for improved quantum algorithm performance
  • Machine learning for quantum control
  • Machine learning for building better quantum hardware

Quantum Algorithms and Applications

  • Quantum computing: models and paradigms
  • Quantum algorithms for hyperparameter tuning (Quantum computing for AutoML)
  • Quantum-enhanced Reinforcement Learning
  • Quantum Annealing
  • Quantum Sampling
  • Applications of Quantum Machine Learning

Fairness and Ethics in Quantum Machine Learning

We look forward to receiving your submissions and to welcoming you to ICEQT’24.

All submissions that are accepted for presentation will be included in the proceedings published by IEEE CPS. To ensure consistency in formatting, authors should follow the general typesetting instructions available on the IEEE’s website, including single-line spacing and a 2-column format. Additionally, authors of accepted papers must agree to the IEEE CPS standard statement regarding copyrights and policies on electronic dissemination.

Prospective authors are encouraged to submit their papers through the conference’s evaluation website at CMT. More information about the conference, including submission guidelines, can be found on our website at

Important Deadlines

March 22, 2024: Submission of papers:
– Full/Regular Research Papers (maximum of 8 pages)
– Short Research Papers (maximum of 5 pages)
– Abstract/Poster Papers (maximum of 3 pages)

April 15, 2024: Notification of acceptance (+/- two days)

May 1, 2024: Final papers + Registration

June 21, 2024: Last day for hotel room reservation at a discounted price.

July 22-25, 2024: The 2024 World Congress in Computer Science, Computer Engineering, and Applied Computing (CSCE’24: USA)
Which includes the International Conference on Emergent and Quantum Technologies (ICEQT’24)

Pablo Rivas, PhD, Baylor University
Bikram Khanal, PhD Candidate, Baylor University

Celebrating Love and Innovation at The Lab: Welcome, PoderOso!

This Valentine’s Day at Baylor.AI, we’re not just celebrating love in the air but also the arrival of our latest powerhouse, affectionately named PoderOso. This state-of-the-art equipment is a testament to the unwavering support and vision of Dr. Greg Hamerly, the department chair of Computer Science at Baylor, and Dr. Daniel Pack, the dean of the School of Engineering and Computer Science. Their dedication to advancing research and innovation within our department has been instrumental in acquiring PoderOso, and for that, we are profoundly grateful.

The name ‘PoderOso’ is derived from Spanish, where ‘Poder’ means ‘Power’ and ‘Oso’ means ‘Bear’. Combined, ‘Poderoso’ translates to ‘Powerful’. Therefore, ‘PoderOso’ creatively merges these concepts to symbolize something that embodies both power and the strength of a bear, aptly reflecting the capabilities of machine.

PoderOso is a technological marvel boasting dual EPYC 7662 processors, a whopping 1024GB of DDR4-3200 ECC memory, cutting-edge storage solutions, and six NVIDIA L40S GPUs. It’s a beast designed for in-house AI research, setting a new benchmark for what we can achieve.

With PoderOso’s impressive specs, our team is poised to push the boundaries of deep learning faster than ever before. From advancing language models that can understand and generate human-like text to developing computer vision systems that can perceive the world as we do; from enhancing adversarial robustness to securing AI against malicious attacks to exploring the burgeoning field of quantum machine learning and driving forward multimodal AI research that integrates multiple types of data, PoderOso will be at the heart of our endeavors. Moreover, it will enable us to delve deeper into AI ethics, ensuring our advancements are aligned with our values and societal needs.

As we unbox PoderOso and get it up and running, we’re filled with anticipation for future breakthroughs. Below are photos of the unboxing and our dedicated IT team in front of the rack.

Our journey into the next frontier of AI research has just gotten a significant boost, thanks to PoderOso and the incredible support of our leaders. Here’s to a future where our research leads to technological advancements and fosters a more ethical, understanding, and inclusive world.

Happy Valentine’s Day to our Baylor.AI family and everyone supporting us on this exciting journey!

(Left to right) Brian Sitton, Mike Hutcheson, Pablo Rivas

Creation and Analysis of an NLU Dataset for DoD Cybersecurity Policies

Comprehending and implementing robust policies is crucial in cybersecurity. In our lab, Ernesto Quevedo et al. recently released a paper, Creation and Analysis of a Natural Language Understanding Dataset for DoD Cybersecurity Policies (CSIAC-DoDIN V1.0), which introduces a groundbreaking dataset to aid in this endeavor. This dataset bridges a significant gap in Legal Natural Language Processing (NLP) by providing structured data specifically focused on cybersecurity policies.

Dataset Overview

The CSIAC-DoDIN V1.0 dataset encompasses a wide array of cybersecurity-related policies, responsibilities, and procedures from the Department of Defense (DoD). Unlike existing datasets that focus primarily on privacy policies, this dataset includes detailed guidelines, strategies, and procedures essential for cybersecurity.

Key Contributions

  1. Novel Dataset: This dataset is the first to include comprehensive cybersecurity policies, guidelines, and procedures.
  2. Baseline Models: The paper provides baseline performance metrics using transformer-based models such as BERT, RoBERTa, Legal-BERT, and PrivBERT.
  3. Open Access: The dataset and code are publicly available, encouraging further research and collaboration.

Experiments and Results

Our team of researchers evaluated several transformer-based models on this dataset:

  • BERT: Demonstrated strong performance across various tasks.
  • RoBERTa: Showed competitive results, particularly in classification tasks.
  • Legal-BERT: Excelled in domain-specific tasks, benefiting from its legal data pre-training.
  • PrivBERT: Provided insights into the transferability of models across different policy subdomains.


Access the CSIAC-DoDIN V1.0 dataset here to explore it and contribute to the advancement of Legal NLP. Join the effort to enhance cybersecurity policy understanding and implementation using cutting-edge NLP models. Download the paper here to learn more about the process.

Gabor Filters as Initializers for Convolutional Neural Networks: A Study on Inductive Bias and Performance on Image Classification

Rivas, Pablo, and Mehang Rai. 2023. “Enhancing CNNs Performance on Object Recognition Tasks with Gabor Initialization” Electronics 12, no. 19: 4072.

Our latest journal article, authored by Baylor graduate and former Baylor.AI lab member Mehang Rai, MS, marks an advancement in Convolutional Neural Networks (CNNs). The paper, titled “Enhancing CNNs Performance on Object Recognition Tasks with Gabor Initialization,” has not only garnered attention in academic circles but also achieved the prestigious Best Poster Award at the LXAI workshop at ICML 2023, a top-tier conference in the field.

Pablo Rivas and Mehang Rai, ” Gabor Filters as Initializers for Convolutional Neural Networks: A Study on Inductive Bias and Performance on Image Classification “, in The LXAI Workshop @ International Conference on Machine Learning (ICML 2023), 7/2023.

A Journey from Concept to Recognition Our journey with this research began with early discussions and progress shared here. The idea was simple yet profound: exploring the potential of Gabor filters, known for their exceptional feature extraction capabilities, in enhancing the performance of CNNs for object recognition tasks. This exploration led to a comprehensive study comparing the performance of Gabor-initialized CNNs against traditional CNNs with random initialization across six object recognition datasets.

Key Findings and Contributions The results were fascinating to us. The Gabor-initialized CNNs consistently outperformed traditional models in accuracy, area under the curve, minimum loss, and convergence speed. These findings provide robust evidence in favor of using Gabor-based methods for initializing the receptive fields of CNN architectures, a technique that was explored before with little success because researchers had been constraining Gabor filters during training, precluding gradient descent to optimize the filters as needed for general purpose object recognition, until now.

Our research contributes significantly to the field by demonstrating:

  1. Improved performance in object classification tasks with Gabor-initialized CNNs.
  2. Superior performance of random configurations of Gabor filters in the receptive layer, especially with complex datasets.
  3. Enhanced performance of CNNs in a shorter time frame when incorporating Gabor filters.

Implications and Future Directions This study reaffirms the historical success of Gabor filters in image processing and opens new avenues for their application in modern CNN architectures. The impact of this research is vast, suggesting potential enhancements in various applications of CNNs, from medical imaging to autonomous vehicles.

As we celebrate this achievement, we also look forward to further research. Future studies could explore initializing other vision architectures, such as Vision Transformers (ViTs), with Gabor filters.

It’s a proud moment for us at the lab to see our research recognized on a global platform like ICML 2023 and published in a journal. This accomplishment is a testament to our commitment to pushing the boundaries of AI and ML research. We congratulate Mehang Rai for this remarkable achievement and thank the AI community for their continued support and recognition.

Understanding the Executive Order on AI: Implications for the Industry and Academia

The White House recently released an executive order titled “Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence.” This directive aims to establish a framework for the responsible development and deployment of AI technologies in the United States. Here are a few key takeaways from this order and its implications for the AI industry and academic researchers.

1. What does this EO mean for the AI industry?

  • Regulatory Framework: The order emphasizes establishing a regulatory framework that ensures the safe and responsible development of AI. Companies must adhere to specific standards and best practices when developing and deploying AI technologies.
  • Transparency and Accountability: The industry is encouraged to adopt transparent methodologies and ensure that AI systems are explainable. This will likely lead to a surge in demand for tools and solutions that offer transparency in AI operations.
  • Collaboration with Federal Agencies: The order promotes cooperation between the private sector and federal agencies. This collaboration fosters innovation while ensuring AI technologies align with national interests and security.
  • Risk Management: Companies are urged to adopt risk management practices that identify and mitigate potential threats AI systems pose. This includes addressing biases, ensuring data privacy, and safeguarding against malicious uses of AI.

At the CRAIG/CSEAI, we’re committed to assisting industry and government partners in navigating this intricate AI regulatory terrain through our research, assessments, and training. Contact us to know more.

2. What does the EO mean for academics doing AI research?

  • Research Funding: The order highlights the importance of federal funding for AI research. Academics can expect increased support and resources for projects that align with the order’s objectives, especially those focusing on safety, security, and trustworthiness.
  • Ethical Considerations: Given the emphasis on trustworthy AI, researchers will be encouraged to incorporate ethical considerations into their work. This aligns with the growing movement towards AI ethics in the academic community.
  • Collaboration Opportunities: The directive promotes collaboration between academia and federal agencies. This could lead to new research opportunities, partnerships, and access to resources that were previously unavailable.
  • Publication and Transparency: The order underscores the importance of transparency in AI research. Academics will be encouraged to publish their findings, methodologies, and datasets to promote openness and reproducibility in the field.

The “Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence” is a significant step towards ensuring that AI technologies are developed and used responsibly. Both the AI industry and academic researchers have a pivotal role to play in realizing the order’s objectives. This order is, in part, a follow-up on prior white house’s effort to promote responsible AI.

Evaluating Robustness of Reconstruction Models with Adversarial Networks

K. Sooksatra, G. Bejarano, and P. Rivas, “Evaluating Robustness of Reconstruction Models with Adversarial Networks,” Procedia Computer Science, vol. 222, pp. 353-366, 2023.

In the ever-evolving landscape of artificial intelligence, our lab has made a significant breakthrough with our latest publication featured in Procedia Computer Science. This research, spearheaded by Korn Sooksatra, delves into the critical domain of adversarial robustness, mainly focusing on reconstruction models, which, until now, have been a less explored facet of adversarial research. This paper was accepted initially into IJCNN and chosen to be added to the INNS workshop and published as a journal article.

Key Takeaways:

  1. Innovative Frameworks: The team introduced two novel frameworks for assessing adversarial robustness: the standard framework, which perturbs input images to deceive reconstruction models, and the universal-attack framework, which generates adversarial perturbations from a dataset’s distribution.
  2. Outperforming Benchmarks: Through rigorous testing on MNIST and Cropped Yale Face datasets, these frameworks demonstrated superior performance in altering image reconstruction and classification, surpassing existing state-of-the-art adversarial attacks.
  3. Enhancing Model Resilience: A pivotal aspect of the study was using these frameworks to retrain reconstruction models, significantly improving their defense against adversarial perturbations and showcasing an ethical application of adversarial networks.
  4. Latent Space Analysis: The research also included a thorough examination of the latent space, ensuring that adversarial attacks do not compromise the underlying features that are crucial for reconstruction integrity.

Broader Impact:

The implications of this research are profound for the AI community. It not only presents a method to evaluate and enhance the robustness of reconstruction models but also opens avenues for applying these frameworks to other image-to-image applications. The lab’s work is a call to the AI research community to prioritize the development of robust AI systems that can withstand adversarial threats, ensuring the security and reliability of AI applications across various domains.

Future Directions:

While the frameworks developed are groundbreaking, the team acknowledges the need for reduced preprocessing time to enhance practicality. Future work aims to refine these frameworks and extend their application to other domains, such as video keypoint interpretation, anomaly detection, and graph prediction.

The result of our standard framework without the discriminator on the left is from the VAE, and on the right is from the VAEGAN. The images 1) in the first column are clean; 2) in the second column are the reconstructed images for the images in the first column; 3) in the third column are adversarial examples concerning the images in the first column; 4) in the last column are the reconstructed images for the adversarial examples.

AI Orthopraxy: Walking the Talk of Trustworthy AI

In today’s digital age, trust has become a precious commodity. It’s the invisible currency that fuels our interactions with technology and brands. Building trust, especially in technology, is a costly and time-consuming process. However, the payoff is immense. When users trust a system or a brand, they are more likely to engage with it, advocate for it, and remain loyal even when faced with alternatives.

One of the most effective ways to build trust in technology is to ensure it aligns with societal goals and values. When a system or technology operates in a way that benefits society and adheres to its values, it is more likely to be trusted and accepted.

However, artificial intelligence (AI) has faced significant challenges. Despite its immense potential and numerous benefits, trust in AI has suffered. This is due to various factors, including concerns about privacy, transparency, potential biases, and the lack of a clear ethical framework guiding its use.

This is where the concept of AI Orthopraxy comes in. AI Orthopraxy is all about the correct practice of AI. It’s about ensuring that AI is developed and used in a way that is ethical, responsible, and aligned with societal values. It’s about walking the talk of trustworthy AI.

In this talk, I will discuss the concept of AI Orthopraxy, the recent developments in AI, the associated risks, and the tools and strategies we can use to ensure the responsible use of AI. The goal is not just to highlight the challenges but also to provide a roadmap for moving forward in a way that is beneficial for all stakeholders.

Large Language Models (LLMs) and Large Multimodal Models: The Ethical Implications

The journey of Large Language Models (LLMs) has been remarkable. From the early successes of models like GPT and BERT, we have seen a rapid evolution in the capabilities of these models. The most recent iterations, such as ChatGPT, have demonstrated an impressive ability to generate human-like text, opening up many applications in areas like customer service, content creation, and more.

Parallel to this, the field of vision models has also seen significant advancements. Introducing models like Vision Transformer (ViT) has revolutionized how we process and understand visual data, leading to breakthroughs in medical imaging, autonomous driving, and more.

However, as with any powerful technology, these models come with their own challenges. One of the most concerning is their fragility, especially when faced with adversarial attacks. These attacks, which involve subtly modifying input data to mislead the model, have exposed the vulnerabilities of these models and raised questions about their reliability.

As someone deeply involved in this space, I see both the immense potential of these models and the serious risks they pose. But I firmly believe these risks can be mitigated with careful engineering and regulation.

Careful engineering involves developing robust models resistant to adversarial attacks and biases. It involves ensuring transparency in how these models work and making them interpretable so that their decisions can be understood and scrutinized.

On the other hand, regulation involves setting up rules and standards that guide the development and use of these models. It involves ensuring that these models are used responsibly and ethically and that there are mechanisms in place to hold those who misuse them accountable.

AI Ethics Standards: The Need for a Common Framework

Standards play a crucial role in ensuring technology’s responsible and ethical use. In the context of AI, they can help make systems fair, accountable, and transparent. They provide a common framework that guides the development and use of AI, ensuring that it aligns with societal values and goals.

One of the key initiatives in this space is the P70XX series of standards developed by the IEEE. These standards address various ethical considerations in system and software engineering and provide guidelines for embedding ethics into the design process.

Similarly, the International Organization for Standardization (ISO) has been working on standards related to AI. These standards cover various aspects of AI, including its terminology, trustworthiness, and use in specific sectors like healthcare and transportation.

The National Institute of Standards and Technology (NIST) has led efforts to develop a framework for AI standards in the United States. This framework aims to support the development and use of trustworthy AI systems and to promote innovation and public confidence in these systems.

The potential of these standards goes beyond just guiding the development and use of AI. There is a growing discussion about the possibility of these standards becoming recommended legal practice. This would mean that adherence to these standards would not just be a matter of ethical responsibility but also a legal requirement.

This possibility underscores the importance of these standards and their role in ensuring the responsible and ethical use of AI. However, standards alone are not enough. They need to be complemented by best practices in AI.

AI Best Practices: From Theory to Practice

As we navigate the complex landscape of AI ethics, best practices serve as our compass. They provide practical guidance on how to implement the principles of ethical AI in real-world systems.

One such best practice is the use of model cards for AI models. Model cards are like nutrition labels for AI models. They provide essential information about a model, including its purpose, performance, and potential biases. By providing this information, model cards help users understand what a model does, how well it does, and any limitations it might have.

Similarly, data sheets for datasets provide essential information about the datasets used to train AI models. They include details about the data collection process, the characteristics of the data, and any potential biases in the data. This helps users understand the strengths and weaknesses of the dataset and the models trained on it.

A newer practice is the use of Data Statements for Natural Language Processing, proposed to mitigate system bias and enable better science in NLP technologies. Data Statements are intended to address scientific and ethical issues arising from using data from specific populations in developing technology for other populations. They are designed to help alleviate exclusion and bias in language technology, lead to better precision in claims about how NLP research can generalize, and ultimately lead to language technology that respects its users’ preferred linguistic style and does not misrepresent them to others.

However, these best practices are only effective if a trained workforce understands them and can implement them in their work. This underscores the importance of education and training in AI ethics. It’s not enough to develop ethical AI systems; we must cultivate a workforce that can uphold these ethical standards in their work. Initiatives like the CSEAI promote responsible AI and develop a workforce equipped to navigate AI’s ethical challenges.

The Role of the CSEAI in Promoting Responsible AI

The Center for Standards and Ethics in AI (CSEAI) is pivotal in promoting responsible AI. Our mission at CSEAI is to provide applicable, actionable standard practices in trustworthy AI. We believe the path to responsible AI lies in the intersection of robust technical standards and ethical solid guidelines.

One of the critical areas of our work is developing these standards. We work closely with researchers, practitioners, and policymakers to develop standards that are technically sound and ethically grounded. These standards provide a common framework that guides the development and use of AI, ensuring that it aligns with societal values and goals.

In addition to developing standards, we also focus on state-of-the-art collaborative AI research and workforce development. We believe that responsible AI requires a workforce that is not just technically competent but also ethically aware. To this end, we offer training programs and resources that help individuals understand the ethical implications of AI, upcoming regulations, and the importance of bare minimum practices like Model Cards, Datasheets for Datasets, and Data Statements.

As the field of AI continues to evolve, so does the landscape of regulation, standardization, and best practices. At CSEAI, we are committed to staying ahead of these changes. We continuously update our value propositions and training programs to reflect the latest developments in the field and to ensure our standards and practices align with emerging regulations.

As the CSEAI initiative moves forward, we aim to ensure that AI is developed and used in a way that is beneficial for all stakeholders. We believe that with the right standards and practices, we can harness the power of AI in a way that is responsible, ethical, and aligned with societal values in a manner that is profitable for our industry partners and safe, robust, and trustworthy for all users.

Conclusion: The Future of Trustworthy AI

As we look toward the future of AI, we find ourselves amidst a cacophony of voices. As my colleagues put it, on one hand, we have the “AI Safety” group, which often stokes fear by highlighting existential risks from AI, potentially distracting from immediate concerns while simultaneously pushing for rapid AI development. On the other hand, we have the “AI Ethics” group, which tends to focus on the faults and dangers of AI at every turn, creating a brand of criticism hype and advocating for extreme caution in AI use.

However, most of us in the AI community operate in the quiet middle ground. We recognize the immense benefits that AI can bring to sectors like healthcare, education, and vision, among others. At the same time, we are acutely aware of the severe risks and harms that AI can pose. But we firmly believe that, like with electricity, cars, planes, and other transformative technologies, these risks can be minimized with careful engineering and regulation.

Consider the analogy of seatbelts in cars. Initially, many people resisted their use. We felt safe enough, with our mothers instinctively extending an arm in front of us during sudden stops. But when a serious accident occurred, the importance of seatbelts became painfully clear. AI regulation can be seen in a similar light. There may be resistance initially, but with proper safeguards in place, we can ensure that when something goes wrong—and it inevitably will—we will all be better prepared to handle it. More importantly, these safeguards will be able to protect those who are most vulnerable and unable to protect themselves.

As we continue to navigate the complex landscape of AI, let’s remember to stay grounded, to focus on the tangible and immediate impacts of our work, and to always strive for the responsible and ethical use of AI. Thank you.

This is a ChatGPT-generated summary of a noisy transcript of a keynote presented at Marist College on Tuesday, June 13, 2023, at 9 am as part of the Enterprise Computing Conference in Poughkeepsie, New York.

The White House Promotes Responsible AI: Here’s What It Means for the Industry

Today, we are on the brink of a new era where Artificial Intelligence (AI) promises to transform every aspect of our lives. However, with great power comes great responsibility. As AI permeates our societies and economies, ensuring its responsible use becomes more critical.

The Biden-Harris Administration has recently taken considerable steps to foster responsible AI innovation, protect citizens’ rights, and ensure safety. But what does this mean for industry players, particularly those who integrate AI into their products?

A Call for Responsibility

At the heart of the White House’s strategy is the principle that companies have a fundamental responsibility to ensure their products are safe before deployment. This safety-first approach means preventing harm and actively promoting the public good.

Meeting with CEOs of leading AI innovators, the Administration has underscored the importance of ethical and trustworthy AI systems, emphasizing safeguards to mitigate risks and potential harms.

Investing in Responsible AI

The Biden-Harris Administration is backing up its words with actions, committing $140 million to launch seven new National AI Research Institutes. These will bring the total number of institutes to 25 nationwide, and each is committed to ethical, responsible AI that serves the public good.

The Role of the NSF IUCRC, Center for Standards and Ethics in AI (CSEAI)

This is where our initiative, the NSF IUCRC, Center for Standards and Ethics in AI (CSEAI), comes into play. We align perfectly with the Administration’s vision for responsible AI, focusing on establishing standards and ethics that serve as the bedrock for AI development and application.

By joining and funding the CSEAI, industry members will directly collaborate with other industry members and with academia, contributing to responsible AI research and advancement. This aligns with the White House’s call for ethical and safe AI and benefits companies in the long run, ensuring their products meet the highest ethical and safety standards.

What this Means for AI Developers and Users

The White House’s recent announcements signal a shift towards more stringent AI development and use standards. This means industries must prioritize building and deploying AI systems that are ethical, trustworthy, and serve the public good.

In a world where AI is becoming ubiquitous, failing to meet these standards can lead to reputational damage, regulatory penalties, and even legal liability. Conversely, those who embrace these principles stand to gain significant competitive advantage, building trust with users and staying ahead of the regulatory curve.


The White House’s commitment to responsible AI is not just good news for Americans—it’s a call to action for industry members who develop or use AI. By aligning with the principles of responsible AI and supporting initiatives like the NSF IUCRC, Center for Standards and Ethics in AI (CSEAI), industry players can meet their ethical obligations and secure their future place in AI.

Join us in making AI safe, ethical, and beneficial for all.

NSF REU: How Two Undergraduates Are Advancing AI for Social Good

Two undergraduate students from the Computer Science Department at Baylor University, Misty and Andrew, have demonstrated the impactful role of undergraduate research in advancing technological frontiers. Their recent work on automatic information retrieval, conducted under the Baylor.AI lab, has been a testament to their dedication and intellectual curiosity.

Misty and Andrew’s journey in the AI lab involved engaging in research discussions that transcended typical undergraduate experiences. Their focus was on developing software to automate data collection, a crucial component in achieving the NSF grant objectives related to studying the illegal trafficking of stolen car parts on C2C marketplaces. This work is a critical piece in the larger puzzle of combating online criminal activities.

Their success in this endeavor was supported by the Research Experiences for Undergraduates (REU) program, highlighting the program’s role in fostering early research experiences. The REU program’s funding not only enabled these students to delve into real-world problems but also allowed them to contribute meaningfully to a project with significant societal implications.

This follow-up story is a continuation of our ongoing efforts, detailed in our previous post, to tackle online criminal activity under NSF’s REU program. The achievements of Misty and Andrew help in the grand scheme of AI research as we strive to have a safe and secure cyberspace; it’s essential to acknowledge and celebrate these steps in their academic journey. Their work exemplifies the potential of undergraduate research in contributing to complex and socially relevant projects.

As we continue to support and mentor our students in the Baylor.AI lab, we look forward to more such stories of perseverance, learning, and meaningful contributions to the field of AI and machine learning.

Sic’em Bears!